
(b) Show that in a group $G, r^{2}=x i$ fandonlyifx $=e$
2.(a) Show that The identity element in a group is unique. (Or)
(b) Develop the properties of the group with illustration.

3 (a) Define group with example. (Or)
(b)Show that The identity element in a group is unique.

4 .(a) Define Cyclic group (Or)
(b)State Lagrange's theorem
5.(a) Define congruence (Or)
(b) Define order of an clement in a group.

Section-B

6.(a) Show that $\mathrm{G}=\mathrm{left}\left\{\text { begin }\{\text { pmatrix }\} 1_{-}\{ \} \& 0 _\{ \} \backslash 0 _\{ \} \text {\& }\right]_{-}\{ \}$end $\{$pmatrix $\}$, begin $\{$pmatrix $\}-1$ ($5 \times 6=30$)
\& 0 \{\} lend $\{$ pmatrix $\}$, begin $\{$ pmatrix $\} 0 _\{ \} \&-1 _\{ \} \backslash 1 _\{ \} \&-1 _\{ \}$end $\{$pmatrix $\}$right $\}$is a group $-\{ \} \& 1 _\{ \} \mid 1$ - $\}$ multiplication. (Or)
(b)Show that $G=\{a+b \sqrt{2} / a, b \in Z\}$ is a group under usual addition.
7.(a) Let $G=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & -1 .\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$. S.T G is a group under matrix multiplication. (Or)
(b)Let G be a Group. P.T (i) Identity element of G is unique. (ii) For any $a \in G$, the inverse of a is unique.

8 .(a) Let H be a subgroup of G . Then S.T a) the identity element of H is the same as of G.b)for each $a \in H$ the inverse of a in H is same as the inverse of a in G . (Or)
(b)P.T A non empty subset H of a group G is a subgroup of G iff $a, b \in H \Rightarrow a b^{-1} \in H$.

9 (a) State and prove Euler's theorem (Or)
(b)If $\mathrm{H} \& \mathrm{~K}$ are subgroups of a group G , then P.T $H \cap K$ is also a subgroup of G .

10 .(a) State and Prove Lagrange's theorem (Or)
(b)P.T Every subgroup of an abelian group is a normal subgroup.

$$
\begin{array}{cc}
\text { Section -C } & (1 \times 10=10) \\
\text { (Compulsory Question) }
\end{array}
$$

11. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ wherea, $b, c, d \in R$, such that $a d-b c=1$. P.T G is a group under matrix multiplication.
